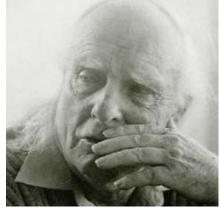


1/28

Speaker-referring pragmatics

Chris Cummins c.r.cummins@gmail.com

Universität Bielefeld, SFB 673: Alignment in Communication

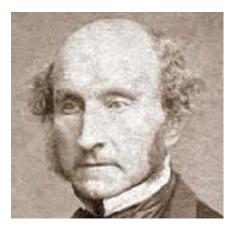

Overview

- Theoretical and experimental semantics/pragmatics
 - focusing on implicature
 - especially quantity expressions and their implicatures
- Motivation for a speaker-referring pragmatic account
 - Outline of this for cases of numerical quantification
 - Experimental tests of its predictions
- Broader theoretical implications and prospects
 - Consequences for implicature
 - Extension to other domains, such as presupposition

Quantity implicatures

- Additional information that is conveyed alongside the declarative content of an utterance
 - Usually to the effect that a related stronger statement would have been false
- Can be analysed as arising from flouting Grice's (1989) first submaxim of quantity:

"Make your contribution as informative as is required for the current purposes of the exchange"



3/28

Early (and prototypical) example

John Stuart Mill (1865: 442)

"If I say to any one, 'I saw some of your children to-day', he might be justified in inferring that I did not see them all, not because the words mean it, but because, if I had seen them all, it is most likely that I should have said so: though even this cannot be presumed unless it is presupposed that I must have known whether the children I saw were all or not."

Why?

- Hearer could reason as follows
 - Speaker said "...some..."
 - Speaker could instead have said "...all...", which would have been more informative (entailing the existential "...some...")
 - Thus (*under some important assumptions*) the stronger statement with "...all..." must not be true
- Hence "some" **implicates** "not all":
 - It conveys the additional meaning in some way
 - The additional meaning is context-dependent
 - The additional meaning is coherently deniable by the speaker, etc.

University of Edinburgh, 21 May 2013

"Some" as a scalar term

- Idea: "some" +> "not all" is a scalar implicature (Horn 1972)
- *<some, all>* constitutes an informational scale, in that
 - its constituent terms differ in informational strength
 - they concern the same semantic area
 - they are equally lexicalised
- The declarative use of a weak scalar term tends to implicate the falsity of all stronger scalemates
 - "some" +> "not all"
 - "or" +> "not and"
 - "warm" +> "not hot", etc. etc.

University of Edinburgh, 21 May 2013

The hearer's necessary assumptions

- Certain conditions have to met for the hearer's reasoning (two slides ago) to be logical
 - The speaker must be (presumed to be) knowledgeable about the stronger proposition (otherwise can only get a 'weak implicature')
 - There must be some reason why the speaker might have stated the stronger proposition
 - Uttering *p* does not normally implicate the falsity of just any alternative *q*, even though the speaker could have said "*p* & *q*"
 - The alternative has to be **relevant** (whatever that means...)
 - It must be possible for the speaker to make the stronger statement
 - The language must have the necessary resources
 - The stronger statement must have been socially permissible

University of Edinburgh, 21 May 2013 7/28

Hearers' flexibility

- Hearers apparently take all this into account, rapidly and online:
 - Breheny, Katsos & Williams (2006): Implicatures reduced when the stronger alternative is irrelevant
 - Bonnefon, Feeney & Villejoubert (2009): Implicatures reduced when the stronger alternative is face-threatening
 - Antoniou, Cummins & Katsos (under review): Implicatures reduced when the speaker is presumed ignorant of the stronger statement
- Useful for communication; tricky if we're interested in the 'preferred/default interpretations' of scalar terms

Shifting focus to the speaker

- Hearer should (and do) recover implicatures iff the speaker intends to convey them
 - Fundamental to communication, if we construe this as involving alignment of situation models
- Thus it could make sense to look at the speaker too
 - Why is a particular expression selected?
 - What are the pragmatic consequences of that choice?
- This contrasts with most experimental work in the area
 - Focusing on interpretation of artificially-constructed stimuli
 - Excellent control but debatable naturalness

University of Edinburgh, 21 May 2013

Numerically-quantified expressions

- Expressions containing "more than 100", "at least 3", "not more than 10", and so on
- Traditionally assumed to have the obvious mathematical semantics (e.g. ">100", "≥3", "≤10", etc.)
- If so, rich entailment relations: many options for a speaker
 - e.g. if "more than 50" is true, so is "more than 49/48/47..."
- Non-trivial choice to be made
 - Most informative option is not necessarily chosen: can say e.g. "Edinburgh has more than 800,000 inhabitants"
 - Yet some options are distinctly odd, e.g. "Edinburgh has more than 1000 inhabitants"

University of Edinburgh, 21 May 2013 10/28

Accounting for this anomaly

- That oddness could be explained semantically
 - "more than 1000" could mean a restricted range, say 1000-10,000
- Problems
 - Sentence seems to be true, if we're forced to choose
 - Placed in the antecedent of a conditional, the consequent would have to be true
 - Under special contextual conditions, the sentence would be fine
- Nevertheless, that sentence can't generally be asserted felicitously, while it could with "more than 800,000"
 - What is 'too weak' to be felicitously asserted?

University of Edinburgh, 21 May 2013 11/28

Pragmatic option: constraints

- I propose to treat the speaker's task as solving a problem of multiple constraint satisfaction
- Speaker's general objective assumed to be to convey maximal information with minimal effort
 - Trade-off needed between conflicting requirements
 - Can be treated within a constraint-based framework such as Optimality Theory (OT), if we can spell out the contributory factors to "information" and "effort"
 - OT systems generate the optimal output given an input and a ranked set of (violable) constraints

University of Edinburgh, 21 May 2013 12/28

Which constraints?

- Functional motivations for the following:
 - Informativeness (INFO)
 - Numeral salience (NSAL)
 - Granularity (GRAN)
 - Quantifier simplicity (QSIMP)
 - Numeral priming (NPRI)
 - Quantifier priming (QPRI)
- System permits the integration of constraints from various different research areas

University of Edinburgh, 21 May 2013 13/28

Relation to Relevance Theory

- Broadly compatible with Relevance Theory, but aims to make more precise predictions
- Note that RT supposes
 - Utterances can be presumed optimal
 - This is defined in terms of the ratio of effect to effort
 - Limitations in the speaker's resources may result in utterances that are not strictly optimal in this sense
- This seems reasonable in outline
 - but we need to unpack the notions of effect, effort and speaker resources in order to make predictions about outputs

University of Edinburgh, 21 May 2013 14/28

Potential of the model

- Can provide a (hopefully well-founded) pragmatic account of phenomena that have been approached semantically
 - e.g. superlative versus comparative quantifiers
- Can generate novel predictions about classes of pragmatic enrichment that have been overlooked
 - e.g. inferences from "more than n", and their interface with priming effects

University of Edinburgh, 21 May 2013 15/28

#1: Superlative quantifiers

- "at most", "at least"
- Classically treated as equivalent to operators \leq , \geq
- On cardinals, should therefore be interdefinable with comparative quantifiers:
 - "...at most 3..." true iff "...fewer than 4..." true
 - "...at least 3..." true iff "...more than 2..." true
- However, there are differences (Geurts and Nouwen 2007)
 - "...at most 2..." not judged to entail "...at most 3..." (whereas this works with "...fewer than 3..." and "...fewer than 4...")
 - Various distributional differences, e.g.
 "...at most 3/*fewer than 4 people, namely Tom, Dick and Harry"

University of Edinburgh, 21 May 2013 16/28

#1: Superlative quantifiers

- Semantic account (G&N): superlative quantifiers also possess a modal component to their semantics
 - "At most 3" ≃ "certainly no more than 3, and possibly exactly 3"
- Pragmatic account (Cummins and Katsos 2010)
 - Compare "at most 3" and "fewer than 3"
 - "fewer than 3" is more informative and the quantifier can be assumed to be no more complex (based on frequency etc.)
 - "fewer than 3" harmonically bounds "at most 3", in OT terms
 - Speaker-referring model thus suggests that "at most 3" should occur only when speaker cannot affirm "fewer than 3"
 - Hence can obtain an implicature from "at most 3" that "exactly 3" must be possible, from the speaker's point of view

University of Edinburgh, 21 May 2013 17/28

#1: Superlative quantifiers

- The constraint-based account thus recaptures the proposed modal meaning, but does so pragmatically
- Advantages:
 - Arguably less stipulative
 - Neatly captures the fact that the modal meaning sometimes doesn't seem to surface (as G&N acknowledged), e.g.:

"If you have had at most 2 drinks, you are fit to drive"

University of Edinburgh, 21 May 2013 18/28

- Expressions of the form "more than n" argued not to enter into informational scales (Fox and Hackl 2006)
- Why not? Suppose they did, then
 - *<more than 4, more than 5>* would be part of a scale
 - "more than 4" would implicate "not more than 5"...
 - ...and together these would entail "exactly 5" (for cardinalities)
 - But "more than 4" does not seem to convey "exactly 5", so this kind of scalar implicature must be absent
- But if there's no implicature, why is "Edinburgh has more than 1000 inhabitants" so anomalous?

University of Edinburgh, 21 May 2013 19/28

- Competing prediction: "more than n" does give an implicature, but not the obvious one:
 - "more than 70" implicates "not more than 80"
- Idea: "more than 71" is more informative than "more than 70", but it violates numeral salience (NSAL)
 - Round numbers widely agreed to be easier to process
 - Assertion of "more than 70" might just mean that the speaker chose the 'low-effort' option
 - However, "more than 80" would be just as good in terms of NSAL, as well as more informative
 - Hence, "more than 70" should implicate "not more than 80", and in general implicatures about the next round number should work

University of Edinburgh, 21 May 2013 20/28

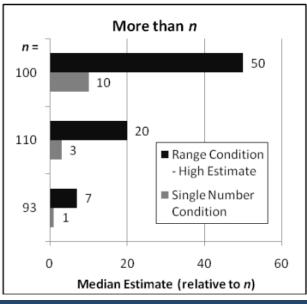
- Tested in Cummins, Sauerland and Solt (2012)
 - Preferred interpretations elicited for quantity expressions

Information:

A newspaper reported the following.

"[Numerical expression] people attended the public meeting about the new highway construction project."

Question:


Based on reading this, how many people do you think attended the meeting?

Between _____ and _____ people attended.

_____ people attended.

University of Edinburgh, 21 May 2013

- Tested in Cummins, Sauerland and Solt (2012)
 - Preferred interpretations elicited for quantity expressions
 - Evidence of pragmatic upper bounds
 - Some participants explicitly reported that they assumed that a stronger statement would have been used if it were true

Fielded on MTurk, n=100 per condition (separate days)

University of Edinburgh, 21 May 2013

#2b: Effect of priming

- Constraint-based model predicts weaker implicatures in the case of numeral reuse
 - Consider e.g. "more than 70" where 70 already occurs in the preceding context
 - Why does speaker use this instead of a stronger expression?
 - Could be because the stronger expression is not true
 - Could be because "more than 70" conforms with the numeral priming constraint
 - In the latter case, no implicature should be available
 - Hence, reused numerals should yield less robust implicatures
 - cf. "Edinburgh has more than 1000 inhabitants"
 - Also borne out by Cummins, Sauerland and Solt (2012)

University of Edinburgh, 21 May 2013 23/28

Summary and prospects

- A speaker-referring constraint-based account appears to have some explanatory and predictive value
 - It offers a novel pragmatic account of some observed phenomena
 - It enables new predictions about pragmatic enrichments to be drawn
- Potential to extend this in theoretically and practically useful ways
 - Exploring priming
 - Handling presuppositions
 - Attempting to generalise to other usage domains

University of Edinburgh, 21 May 2013

Priming and implicature

- Model assumes form-based priming effects
- However, experimental results could be attributable to higher-level concepts such as Question Under Discussion

We need to sell n tickets to break even. We've already sold more than n tickets.

- So, does the reuse of a number affect the implicatures even if the prior mention was somehow irrelevant?
- May be an interesting question either way:
 - If 'yes', evidence that pure priming effects have effect on implicature
 - If 'no', suggests that priming effects may lead to imperfect communication at a pragmatic level

University of Edinburgh, 21 May 2013

Presupposition projection

- Active research question in sem/prag: how do we explain the variable projection behaviour of presuppositions?
- Contrast

John didn't find out that Clare was ill with John didn't find out that Clare was ill, because she wasn't

- Presupposition triggers such as 'find out' can introduce new information, but sometimes that's suppressed
- Again we can ask: why does the speaker use a trigger?
 - If there's a contextual justification, such as priming, we should expect the presupposition not to project to the discourse level
 - If not, it should project
 - Can we model the speaker's choice in a similar fashion?

University of Edinburgh, 21 May 2013 26/28

Other domains?

- Numeral-referring constraints are domain-specific, but the underlying idea is more general
- The approach captures the idea that
 - hearers are good at computing the speaker's intended meaning
 - they do this by distinguishing what is intentional from what is unintentional, as far as the speaker is concerned
 - so if hearers are sufficiently adept, we can study meaning by focusing on the speaker
- Widening the scope of the model is problematic, but
 - might shed light on 'metalinguistic negation' and similar effects
 - might open up new perspectives on pragmatic enrichment

University of Edinburgh, 21 May 2013

Thank you!

References

Bonnefon, J. F., Feeney, A., and Villejoubert, G. (2009). When some is actually all: Scalar inferences in face-threatening contexts. *Cognition*, 112: 249-58.

Breheny, R., Katsos, N., and Williams, J. (2006). Are scalar implicatures generated by default? *Cognition*, 100: 434-63.

Cummins, C. and Katsos, N. (2010). Comparative and superlative quantifiers: pragmatic effects of comparison type. *Journal of Semantics*, 27: 271-305.

Cummins, C., Sauerland, U., and Solt, S. (2012). Granularity and scalar implicature in numerical expressions. *Linguistics and Philosophy*, 35: 135-69.

Fox, D. and Hackl, M. (2006). The universal density of measurement. *Linguistics and Philosophy*, 29: 537-86.

Geurts, B. and Nouwen, R. (2007). "At least" et al.: the semantics of scalar modifiers. *Language*, 83: 533-59.

Grice, H. P. (1989). *Studies in the Way of Words*. Cambridge, MA: Harvard University Press.

Horn, L. R. (1972). On the semantic properties of logical operators in English. UCLA dissertation, distributed by Indiana University Linguistics Club, 1976.

University of Edinburgh, 21 May 2013 28/28