

A plethora of quantity expressions

Chris Cummins
Universität Bielefeld SFB 673 - Alignment in Communication

More than enough options

- More than
- At least
- No(t) fewer than
- Upwards of
- Minimally
- A minimum of
- In excess of
- or more

More than enough options

- More than
- At least
- No(t) fewer than
- Upwards of
- Minimally
- A minimum of
- In excess of
- or more

More than enough options

- More than 4
- At least 5
- No(t) fewer than 5
- Upwards of 4
- Minimally 5
- A minimum of 5
- In excess of 4
- 5 or more

Possible analyses

- Non-obvious semantic differences between expressions
- Pragmatic factors determine nuances of usage and interpretation
- Some combination of the two

Geurts and Nouwen (2007)

- Semantic account of 'at least/most' versus 'more/fewer than'
- 'At least n ' seems to require possibility of exactly n
- At least it isn't raining *More than it isn't raining
- 'At most 2' !=> 'At most 3' 'Fewer than 3' => 'Fewer than 4 ' (cf. Geurts et al. 2010)

Geurts and Nouwen (2007)

- Modality in the semantics of 'at least/most'
- 'At least n ': a group of cardinality n certainly exists, and it is possible that a larger group does
- 'At most n ': it is possible that a group of cardinality n exists, and it is certain that no larger group does
- How does the 'possibility’ work?
- Wrong prediction for, e.g., conditionals:
- If you have at least four children, you are entitled to extra benefits

Inconsistent naïve reasoning?

- Mary had at most two drinks !=> Mary had at most three drinks
- Anyone who had at most three drinks is fit to drive. Mary had at most two drinks. Is Mary fit to drive?
- Modal meaning seems to be cancelled in (at least) the antecedent of the conditional

Nouwen (2010)

- Class A quantifiers
- "more than", "fewer than", ...
- Quantity relative to a reference value
- Class B quantifiers
- "at most/least", "maximally/minimally"...
- Bounds on a degree property
- cf. Schwarz, Buccola and Hamilton (2012)

Triangles have [Q] 10 sides

Pragmatic account?

- Nouwen's Class B quantifiers all encode non-strict comparison
- Some evidence this is harder (Cummins and Katsos 2010), so these forms could be marked

Triangles have at most 10 sides $\stackrel{+>}{ }$
S cannot affirm "triangles have fewer than 10 sides"

- Why no implicature from "fewer than 10 "?
- Possible reason: salience of number used

(At least) two kinds of reasoning task

- Geurts et al. (2010)
- Does the first sentence entail the second? Jane had at most two drinks Jane had at most three drinks
- Potential problems
- Logically untrained participants: how do you obtain entailment without pragmatic intrusion?
- Asking the question biases participant to draw the inference (Geurts and Pouscoulous 2009)...
- ...or maybe to reject it

(At least) two kinds of reasoning task

- Cummins and Katsos (2010)
- Anyone who had at most three drinks is fit to drive Jane had at most two drinks Is it true that Jane is fit to drive?
- Potential problems
- More difficult task
- Risk of unnatural constructions, inviting paraphrase

Compromise

- Combine two tasks:
- Pragmatic task, following Geurts et al. (2010)
- Semantic task, following Cummins and Katsos (2010) using items based on BNC usage examples
- Question: does a given instance of usage
- entail the same sentence with a different quantifier?
- allow the substitution of a different quantifier while preserving assertability?

Possible outcomes

- Relating quantifier A to quantifier B
- Passes both tests: A could be replaced by B
- Passes semantic test only: A entails B, but the use of B suggests something that the use of A does not
- Passes neither test: B means something that A does not
- And then the reverse...
- Both tests passed both ways: A and B equivalent in meaning
- Both one way, only semantic the other way: one conveys a pragmatic meaning that the other does not, etc.

Outlook

- Aim to mitigate risk of semantic overanalysis
- Especially those based on dubious intuitions and atypical imagined examples of usage
- Suggest where a pragmatic account would be feasible
- Aim to capture differences in meaning at the most general level possible

References

- Cummins, C. and Katsos, N. (2010). Comparative and superlative quantifiers: pragmatic effects of comparison type. Journal of Semantics, 27: 271-305.
- Geurts, B. and Nouwen, R. (2007). 'At least' et al.: the semantics of scalar modifiers. Language, 83: 533-559.
- Geurts, B. and Pouscoulous, N. (2009). Embedded implicatures?!? Semantics \& Pragmatics, 2(4): 1-34.
- Geurts, B., Katsos, N., Cummins, C., Moons, J. and Noordman, L. (2010). Scalar quantifiers: logic, acquisition and processing. Language and Cognitive Processes, 25: 130-48.
- Nouwen, R. (2010). Two kinds of modified numerals. Semantics \& Pragmatics, 3: 1-41.
- Schwarz, B., Buccola, B. and Hamilton, M. (2012). Two types of class B numeral modifiers: a reply to Nouwen 2010. Semantics \& Pragmatics, 5(1): 1-25.

