

Research Centre for English and Applied Linguistics

Recovering some, if not all, of the speaker's meaning

Chris Cummins

Universität Bielefeld: 27 April 2011

Implicatures and numerical expressions

- (Scalar) Implicatures
 - What they are
 - When they succeed and when they fail
- Numerically-quantified expressions
 - Failure of implicatures a distinct phenomenon?
 - A constraint-based model for their usage (and interpretation)
 - Verifying the predicted pragmatic enrichments
- SIs in a constraint-based model
 - Probabilistic implicatures?
 - Probabilistic representations of propositional content?

Implicatures

- Classical (Gricean) view:
 - Pragmatic enrichments
 - Arising from what the speaker chose **not** to say
 - A. Is Tom a good lecturer?
 - B. He has a nice line in sweaters.
 - => Tom is not a good lecturer (in B's opinion)
- Sub-case: scalar implicatures
 - A. Did your students pass the exam?
 - B. <u>Some</u> of them did.

=> <u>Not all</u> of B's students passed the exam

Criteria for scalar implicature calculation

Criteria for scalar implicature calculation

Relevance of stronger proposition

- Weaker statement is satisfactory: no implicature
 - A: What do you have to do to get a scholarship?
 - B: You have to get distinction grades in some exams.
 - A: Who is available to interview applicants?
 - B: Anna or Bert from Human Resources.
- Accords with Relevance Theory (Sperber and Wilson 1986/1995)

Criteria for scalar implicature calculation

Unavailability of stronger statement

- Stronger statement may be blocked
 - e.g. on grounds of politeness: Bonnefon, Feeney and Villejoubert (2009)
 - A: What kind of impression did I make at dinner?
 - B: Some of the guests thought that you drank too much.
 - Stronger statement would be face-threatening
 - B may suppose A is just being polite, even if 'all' would be true.
 - Hence hearer fails to draw the 'reassuring' implicature.

Interim summary

- Hearers recover scalar implicatures
 - Only when the speaker could have made a more informative statement, knowledgeably, relevantly and politely
 - (and apparently only once having established that these conditions hold)

• No option for the speaker => no implicature for the hearer

Numerals and implicature

- Unmodified numerals are ambiguous between cardinal and existential readings
 - Claimed that precise reading could arise from implicature

- Semantics: *n* = 'at least *n*'
- "There are *n* people" (vs. "There are *n*+1 people")
- \Rightarrow 'It is not the case that there are at least *n*+1 people'
- \Rightarrow 'There are exactly *n* people'
- On this account, (bare) numerals give rise to SIs

Implicature failure in the numerical domain

"more/fewer than n" (Fox and Hackl 2006)
 "at least/most n" (Krifka 1999)

"John has more than three children" => It is not true that John has more than four children (?) => John has exactly four children (?!)

- Counterintuitive
- Robustly fails with untrained participants (Geurts et al. 2010)
- Claim: "more than n" etc. fail to enter into predicted scale <more than n, more than n+1, ...>

Implicature failure vs. pragmatic restrictions

- "more than 100" !=> "not more than 101"
 - "More than 100 people got married today"
- Yet "more than 100" => *something*...
 - ??"More than 100 students attend this university"
 - Restriction not attributable to semantic considerations alone...
 - ...suggesting that some kind of pragmatic enrichment should be available here
- What's the restriction?
- What's the enrichment?

Modelling the speaker's decision procedure

- Why is "more than 100 people study at this university" pragmatically anomalous?
 - Underinformative (to an unreasonable extent)
 - Better options available
- Idea: treat this as a problem of multiple constraint satisfaction
 - 'Be informative' is one constraint
 - What else?

Building a constraint-based model

Many semantically truthful options are available for the speaker's use in a given situation

 More than 20/19/18...

 Fewer than 25/26/27...

 Between 20 and 25/19 and 26...

Building a constraint-based model

Some of these are evidently unsatisfactory because they violate criteria for efficiency

[?]23, or – slightly less likely – 24, or... [?]More than two... ...boats are in the harbour [?]Less than a million...

Building a constraint-based model

• These criteria cannot typically all be satisfied at once

*(Exactly) 23... *(About) 20... *Some...

...boats are in the harbour

Constraint-based model of speaker's choice

- Two main components:
 - (Individually) ranked list of relevant constraints
 - Selection procedure to determine optimal utterance
- Classical Optimality Theory account
 - Speaker-referring
 - Unidirectional

(Constraints on) constraints

- Constraints in such an account must be
 - Preferred
 - Non-obligatory
 - Defined in such a way that their violations can be calculated
- Proposed constraints are
 - Informativeness
 - Quantifier simplicity
 - Numeral salience
 - Granularity
 - Numeral / quantifier priming

Numeral-referring constraints

- Potentially interdisciplinary model
 - Musolino (2004), among others, emphasises importance of considering aspects of numerical cognition when discussing numerically-quantified expressions
- Number-specific constraints present here
 - Numeral salience
 - (actually derived from psychology-of-number considerations)
 - Numeral priming
- Can apply these (plus informativeness constraint) to the analysis of "more than n", etc.

Explaining "more than" implicature failure

- "more than 100" !=> "more than 101"
 - Is there any reason, other than truth, for a speaker to choose the weaker statement rather than the stronger?
 - YES
 - 101 is a less salient number than 100
 - Disfavoured communicatively
 - Violates numeral salience constraint
- Hearer:
 - Speaker chose to say "more than 100"...
 - ...but maybe that was just to satisfy numeral salience...
 - ...so the implicature is not available

But recovering part of the implicature

- Speaker says "more than 100"
 - What if "more than 1000" was the case?
 - Numeral just as salient
 - Harmonically bounds weaker term (OT parlance)
- Hearer should be able to conclude that
 - "more than 1000" isn't the case
 - "more than 200" probably isn't
 - "more than 150/125/110" might not be...
- Seems to match our intuitions tolerably well

Experimental verification

Information: A newspaper reported the following.

- "[Numerical expression] people attended the public meeting about the new highway construction project."
- *Question:* Based on reading this, how many people do you think attended the meeting?

Between _____ and _____ people attended [range condition]

____ people attended [single number condition].

Cummins, Sauerland and Solt (submitted)

Experimental verification

Fielded on MTurk: 100 participants per condition ANOVAs show significant effects in both conditions (p < 0.05) Comments reflect explicit awareness of this reasoning

Effect of priming on this implicature

- Less obvious prediction:
 - Prior mention of numeral attenuates implicature
 - A: We need to sell (*n*) tickets to break even.
 - B: We've already sold more than *n* tickets.
- No prior mention
 - Hearer reasons as before implicature conditioned by salience
- Prior mention
 - Speaker could have said 'more than *m*' for some *m* > *n*...
 - ...but maybe chose 'more than *n*' to satisfy numeral priming...
 - ...so implicature not available.

Experimental verification (2)

Please read the following short dialogues, and answer the questions by filling in a value for each blank space, according to your opinion. Consider each dialogue separately. Assume that participant B is well-informed, telling the truth, and being co-operative in each case.

- A: We need to sell (60) tickets to cover our costs. How are the ticket sales going?
- B: So far, we've sold fewer than 60 tickets.

How many tickets have been sold? From to, most likely

Experimental verification (2)

40 participants: "more than" and "fewer than" conditions. 3x2x2 ANOVA shows main effects of quantifier (F(1,41)= 8.66, p<0.01) roundness (F(2,80)=44.83, p<0.001) priming (F(1,40)=10.78, p<0.01).

Numeral priming in a constraint model?

- Does this constitute unambiguous evidence for numeral priming in particular / the constraint-based model in general?
 - NO
 - Could reflect the operation of some other constraint, e.g. relating to Question Under Discussion
 - Could be modelled by some other technique, e.g. using a connectionist model
- However, does succeed in predicting and explaining these previously unknown / rejected implicatures

Constraints and classical pragmatics

- Classical view:
 - Implicature succeeds except when alternative is blocked because
 - Not known to speaker
 - Not polite
 - Not relevant to discourse needs, etc.
- Constraint-based view:
 - Implicature succeeds except when alternative is blocked because
 - It violates numeral salience
 - It violates numeral priming
 - It violates quantifier simplicity, etc.
- Both views: no choice ⇔ no implicature

Hearer's viewpoint

- To obtain implicature, hearer must determine whether
 - stronger statements were rejected because the speaker knows them to be false (licensing implicature), or
 - stronger statements are rejected by the speaker for some other reasons (licensing no implicature)
- Speaker says "more than 100"
 - How does the hearer know that 100 isn't somehow 'primed'?
 - cf. speaker's knowledge: 'some' do they know about 'all'?
- Goal of hearer: compute implicature exactly when it holds

Towards probabilistic implicatures?

- Hearer must either
 - Draw implicatures and risk over-interpreting utterances
 - Fail to draw implicatures and risk under-interpreting utterances
- Given uncertainty, case for probabilistic implicature: either
 - A decision is taken on probabilistic grounds to draw the implicature
 - Drawing the implicature means raising perceived probability of the truth of corresponding proposition

Constraints and probabilistic implicature

- Speakers have individual constraint rankings
 - Utterance reflects intention and constraint ranking
- Utterances may either
 - Be preferred for many situations under many rankings ('some')
 - Be preferred for few situations under many rankings ('more than 55')
 - Be preferred for different (sets of) situations under different rankings ('more than 100')
- Interpretation: probability of situation conditioned by probability of constraint ranking

General implications of this viewpoint

- Hearers are assumed to be able to manage complex representations – a 'landscape of probability'
 - Suggests that probability might be bound up in the nature of representations of propositional content
- Speakers can presumably do likewise
 - which suggests that the speaker's intention could also be a complex construct of a similar type
 - which in turn has interesting implications with respect to e.g.
 - evaluating the informativeness of a candidate utterance, as part of determining the optimal expression
 - reasoning with quantity representations
 - the representation of other forms of asserted and nonasserted content

Presuppositions?

- Problem of presupposition accommodation
 - "The King of France is *not* bald"
 - "I *didn't* realise that sharks were mammals"
- Possible idea
 - Speaker's choice of utterance is optimised with respect to several constraints
 - Optimal utterance may nevertheless convey infelicitous presuppositions
 - Hearer accounts for this, just as for the infelicitous SI, by reasoning that presupposition trigger is contextually forced rather than corresponding to the speaker's intention

Conclusion

- Can model choice of numerically-quantified expression using constraint-based approach
 - Yields predictions about pragmatic enrichment of such expressions that are
 - intuitively plausible
 - borne out experimentally
 - contradictory to existing literature
 - Approach fits with general Gricean pragmatic principles
 - Implicatures only where speaker chooses to use weaker utterance, taking other determinants of this into account
 - Possibility of generalising approach to other domains
 - Accounting for SIs in other areas
 - Accounting for other forms of non-asserted content?

References

- Bonnefon, J.-F., Feeney, A. and Villejoubert, G. (2009). When some is actually all: Scalar implicatures in face-threatening contexts. *Cognition*, 112: 249-58.
- Cummins, C., Sauerland, S. and Solt, S. (submitted). Granularity and scalar implicature in numerical expressions.
- Fox, D. and Hackl, M. (2006). The universal density of measurement. *Linguistics and Philosophy*, 29: 537-86.
- Geurts, B., Katsos, N., Cummins, C., Moons, J. and Noordman, L. (2010). Scalar quantifiers: logic, acquisition, and processing. *Language and Cognitive Processes*, 25(1): 130-48.
- Krifka, M. (1999). At least some determiners aren't determiners. In K. Turner (ed.), *The Semantics/Pragmatics Interface from Different Points of View*, Current Research in the Semantics/Pragmatics Interface Vol. 1. Oxford: Elsevier. 257-92.
- Musolino, J. (2004). The semantics and acquisition of number words: integrating linguistic and developmental perspectives. *Cognition*, 93: 1-41.
- Sperber, D. and Wilson, D. (1986/1995). *Relevance: Communication and cognition*. Oxford: Blackwell.