Research Centre for English and Applied Linguistics

Recovering some, if not all, of the speaker's meaning

Chris Cummins

Universität Bielefeld: 27 April 2011

Implicatures and numerical expressions

- (Scalar) Implicatures
- What they are
- When they succeed and when they fail
- Numerically-quantified expressions
- Failure of implicatures - a distinct phenomenon?
- A constraint-based model for their usage (and interpretation)
- Verifying the predicted pragmatic enrichments
- SIs in a constraint-based model
- Probabilistic implicatures?
- Probabilistic representations of propositional content?

Implicatures

- Classical (Gricean) view:
- Pragmatic enrichments
- Arising from what the speaker chose not to say
A. Is Tom a good lecturer?
B. He has a nice line in sweaters.
=> Tom is not a good lecturer (in B's opinion)
- Sub-case: scalar implicatures
A. Did your students pass the exam?
B. Some of them did.
=> Not all of B's students passed the exam

Criteria for scalar implicature calculation

Criteria for scalar implicature calculation

Relevance of stronger proposition

- Weaker statement is satisfactory: no implicature

A: What do you have to do to get a scholarship?
B: You have to get distinction grades in some exams.

A: Who is available to interview applicants?
B: Anna or Bert from Human Resources.

- Accords with Relevance Theory (Sperber and Wilson 1986/1995)

Criteria for scalar implicature calculation

Unavailability of stronger statement

- Stronger statement may be blocked
- e.g. on grounds of politeness: Bonnefon, Feeney and Villejoubert (2009)

A: What kind of impression did I make at dinner?
B: Some of the guests thought that you drank too much.

- Stronger statement would be face-threatening
- B may suppose A is just being polite, even if 'all' would be true.
- Hence hearer fails to draw the 'reassuring' implicature.

Interim summary

- Hearers recover scalar implicatures
- Only when the speaker could have made a more informative statement, knowledgeably, relevantly and politely
- (and apparently only once having established that these conditions hold)
- No option for the speaker => no implicature for the hearer

Numerals and implicature

- Unmodified numerals are ambiguous between cardinal and existential readings
- Claimed that precise reading could arise from implicature
- Semantics: $n=$ 'at least n '
- "There are n people" (vs. "There are $n+1$ people")
\Rightarrow 'It is not the case that there are at least $n+1$ people'
\Rightarrow 'There are exactly n people'
- On this account, (bare) numerals give rise to SIs

Implicature failure in the numerical domain

- "more/fewer than n " (Fox and Hackl 2006)
"at least/most $n "$ (Krifka 1999)
"John has more than three children"
=> It is not true that John has more than four children (?)
=> John has exactly four children (?!)
- Counterintuitive
- Robustly fails with untrained participants (Geurts et al. 2010)
- Claim: "more than n " etc. fail to enter into predicted scale <more than n, more than $n+1, \ldots>$

Implicature failure vs. pragmatic restrictions

. "more than 100 " !=> "not more than 101 "
. "More than 100 people got married today"

- Yet "more than 100 " => something...
- ??"More than 100 students attend this university"
- Restriction not attributable to semantic considerations alone...
- ...suggesting that some kind of pragmatic enrichment should be available here
- What's the restriction?
- What's the enrichment?

Modelling the speaker's decision procedure

- Why is "more than 100 people study at this university" pragmatically anomalous?
- Underinformative (to an unreasonable extent)
- Better options available
- Idea: treat this as a problem of multiple constraint satisfaction
- 'Be informative’ is one constraint
- What else?

Building a constraint-based model

- Many semantically truthful options are available for the speaker's use in a given situation

More than 20/19/18...
Fewer than 25/26/27...
...boats are in the harbour
Between 20 and 25/19 and 26...

Building a constraint-based model

- Some of these are evidently unsatisfactory because they violate criteria for efficiency

?23, or - slightly less likely - 24, or...
?More than two...
...boats are in the harbour
?Less than a million...

Building a constraint-based model

- These criteria cannot typically all be satisfied at once

*(Exactly) 23...
*(About) 20...
...boats are in the harbour
*Some...

Constraint-based model of speaker's choice

- Two main components:
- (Individually) ranked list of relevant constraints
- Selection procedure to determine optimal utterance
- Classical Optimality Theory account
- Speaker-referring
- Unidirectional

(Constraints on) constraints

- Constraints in such an account must be
- Preferred
- Non-obligatory
- Defined in such a way that their violations can be calculated
- Proposed constraints are
- Informativeness
- Quantifier simplicity
- Numeral salience
- Granularity
- Numeral / quantifier priming

Numeral-referring constraints

- Potentially interdisciplinary model
- Musolino (2004), among others, emphasises importance of considering aspects of numerical cognition when discussing numerically-quantified expressions
- Number-specific constraints present here
- Numeral salience
- (actually derived from psychology-of-number considerations)
- Numeral priming
- Can apply these (plus informativeness constraint) to the analysis of "more than n ", etc.

Explaining "more than" implicature failure

- "more than 100 " !=> "more than 101 "
- Is there any reason, other than truth, for a speaker to choose the weaker statement rather than the stronger?
- YES
- 101 is a less salient number than 100
- Disfavoured communicatively
- Violates numeral salience constraint
- Hearer:
- Speaker chose to say "more than 100 "...
- ...but maybe that was just to satisfy numeral salience...
- ...so the implicature is not available

But recovering part of the implicature

- Speaker says "more than 100 "
- What if "more than 1000 " was the case?
- Numeral just as salient
- Harmonically bounds weaker term (OT parlance)
- Hearer should be able to conclude that
- "more than 1000 " isn't the case
- "more than 200" probably isn't
- "more than $150 / 125 / 110$ " might not be...
- Seems to match our intuitions tolerably well

Experimental verification

Information: A newspaper reported the following.
"[Numerical expression] people attended the public meeting about the new highway construction project."
Question: Based on reading this, how many people do you think attended the meeting?

Between ___ and ___ people attended [range condition]
___ people attended [single number condition].

Cummins, Sauerland and Solt (submitted)

Experimental verification

Fielded on MTurk: 100 participants per condition ANOVAs show significant effects in both conditions ($p<0.05$)
Comments reflect explicit awareness of this reasoning

Effect of priming on this implicature

- Less obvious prediction:
- Prior mention of numeral attenuates implicature

A: We need to sell (n) tickets to break even.
B: We've already sold more than n tickets.

- No prior mention
- Hearer reasons as before - implicature conditioned by salience
- Prior mention
- Speaker could have said 'more than m ' for some $m>n$...
- ...but maybe chose 'more than n ' to satisfy numeral priming...
- ...so implicature not available.

Experimental verification (2)

Please read the following short dialogues, and answer the questions by filling in a value for each blank space, according to your opinion. Consider each dialogue separately. Assume that participant B is well-informed, telling the truth, and being co-operative in each case.

A: We need to sell (60) tickets to cover our costs. How are the ticket sales going?
B: So far, we've sold fewer than 60 tickets.

How many tickets have been sold? From to, most likely

Experimental verification (2)

40 participants: "more than" and "fewer than" conditions.
$3 \times 2 \times 2$ ANOVA shows main effects of
quantifier $(F(1,41)=8.66, p<0.01)$
roundness $(F(2,80)=44.83, p<0.001)$
priming $(F(1,40)=10.78, \mathrm{p}<0.01)$.

Numeral priming in a constraint model?

- Does this constitute unambiguous evidence for numeral priming in particular / the constraint-based model in general?
- NO
- Could reflect the operation of some other constraint, e.g. relating to Question Under Discussion
- Could be modelled by some other technique, e.g. using a connectionist model
- However, does succeed in predicting and explaining these previously unknown / rejected implicatures

Constraints and classical pragmatics

- Classical view:
- Implicature succeeds except when alternative is blocked because
- Not known to speaker
- Not polite
- Not relevant to discourse needs, etc.
- Constraint-based view:
- Implicature succeeds except when alternative is blocked because
- It violates numeral salience
- It violates numeral priming
- It violates quantifier simplicity, etc.
- Both views: no choice \Leftrightarrow no implicature

Hearer's viewpoint

- To obtain implicature, hearer must determine whether
- stronger statements were rejected because the speaker knows them to be false (licensing implicature), or
- stronger statements are rejected by the speaker for some other reasons (licensing no implicature)
- Speaker says "more than 100"
- How does the hearer know that 100 isn't somehow 'primed'?
- cf. speaker’s knowledge: 'some' - do they know about 'all'?
- Goal of hearer: compute implicature exactly when it holds

Towards probabilistic implicatures?

- Hearer must either
- Draw implicatures and risk over-interpreting utterances
- Fail to draw implicatures and risk under-interpreting utterances
- Given uncertainty, case for probabilistic implicature: either
- A decision is taken on probabilistic grounds to draw the implicature
- Drawing the implicature means raising perceived probability of the truth of corresponding proposition

Constraints and probabilistic implicature

- Speakers have individual constraint rankings
- Utterance reflects intention and constraint ranking
- Utterances may either
- Be preferred for many situations under many rankings ('some')
- Be preferred for few situations under many rankings ('more than 55')
- Be preferred for different (sets of) situations under different rankings ('more than 100')
- Interpretation: probability of situation conditioned by probability of constraint ranking

General implications of this viewpoint

- Hearers are assumed to be able to manage complex representations - a 'landscape of probability'
- Suggests that probability might be bound up in the nature of representations of propositional content
- Speakers can presumably do likewise
- which suggests that the speaker's intention could also be a complex construct of a similar type
- which in turn has interesting implications with respect to e.g.
- evaluating the informativeness of a candidate utterance, as part of determining the optimal expression
- reasoning with quantity representations
- the representation of other forms of asserted and nonasserted content

Presuppositions?

- Problem of presupposition accommodation
- "The King of France is not bald"
- "I didn't realise that sharks were mammals"
- Possible idea
- Speaker's choice of utterance is optimised with respect to several constraints
- Optimal utterance may nevertheless convey infelicitous presuppositions
- Hearer accounts for this, just as for the infelicitous SI, by reasoning that presupposition trigger is contextually forced rather than corresponding to the speaker's intention

Conclusion

- Can model choice of numerically-quantified expression using constraint-based approach
- Yields predictions about pragmatic enrichment of such expressions that are
- intuitively plausible
- borne out experimentally
- contradictory to existing literature
- Approach fits with general Gricean pragmatic principles
- Implicatures only where speaker chooses to use weaker utterance, taking other determinants of this into account
- Possibility of generalising approach to other domains
- Accounting for SIs in other areas
- Accounting for other forms of non-asserted content?

References

- Bonnefon, J.-F., Feeney, A. and Villejoubert, G. (2009). When some is actually all: Scalar implicatures in face-threatening contexts. Cognition, 112: 249-58.
- Cummins, C., Sauerland, S. and Solt, S. (submitted). Granularity and scalar implicature in numerical expressions.
- Fox, D. and Hackl, M. (2006). The universal density of measurement. Linguistics and Philosophy, 29: 537-86.
- Geurts, B., Katsos, N., Cummins, C., Moons, J. and Noordman, L. (2010). Scalar quantifiers: logic, acquisition, and processing. Language and Cognitive Processes, 25(1): 130-48.
- Krifka, M. (1999). At least some determiners aren't determiners. In K. Turner (ed.), The Semantics/Pragmatics Interface from Different Points of View, Current Research in the Semantics/Pragmatics Interface Vol. 1. Oxford: Elsevier. 257-92.
- Musolino, J. (2004). The semantics and acquisition of number words: integrating linguistic and developmental perspectives. Cognition, 93: 1-41.
- Sperber, D. and Wilson, D. (1986/1995). Relevance: Communication and cognition. Oxford: Blackwell.

